
Java -enabled Robotics Software
Development Environment

Version 2.0

www.ridgesoft.com

IMPORTANT NOTICE

Information in this document is furnished under license and may only be used in
accordance with the terms of the license.

RIDGESOFT PRODUCTS ARE PROVIDED AS IS WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT.

RIDGESOFT PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR
SYSTEMS WHERE FAILURE COULD RESULT IN THE LOSS OF LIFE OR
HAVE SERIOUS LIFE THREATENING OR ECONOMIC IMPACT.

Copyright © 2003-2009 by RidgeSoft, LLC. All rights reserved.

RidgeSoft , RoboJDE

and IntelliBrain are trademarks of RidgeSoft, LLC.

RidgeSoft, LLC
PO Box 482
Pleasanton, CA 94566
www.ridgesoft.com

Java and all Java-based marks are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries. All other brand
or product names are trademarks of their respective owners.

Document Version 2.0

i

Table of Contents

Introduction..1
RoboJDE Graphical User Interface .. 1
RidgeSoft Command Line Loader .. 1
RoboJDE Virtual Machine... 1
RoboJDE Class Library .. 2
Java Programming Benefits for Robotics Software Developers 2

Installation ...4
Licensing .. 4

Getting Started ..5
Starting the RoboJDE Graphical User Interface ... 5
Downloading the RoboJDE Virtual Machine to Your Robotics Controller 6
Loading and Running the Hello World Example ... 6
Creating a New Project... 7

Using the RoboJDE Graphical User Interface ...8
Using Menus... 8
Using the Tool Bar.. 11

Selecting the Load Location.. 11
Setting Your Project s Properties.. 12
Using the Edit Window.. 13

Editing Your Program.. 13
Building and Loading Your Program ... 13
Debugging Build Errors ... 14

Using the Run Window ... 15

Using the RidgeSoft Command Line Loader ...17
Command Line Loader Syntax ... 17
Command Line Loader Options.. 17
Loading and Running Programs from within Eclipse 19

Configuring Your Eclipse Project .. 20
Configuring the Loader as an External Tool.. 20
Loading and Running Your Program... 22

Programming Your Robot23
Using the RoboJDE Class Library .. 23
Robot Controller API Quick References ... 23
Learning from Examples... 23
Understanding Errors, Exceptions and Stack Traces 23
Using Packages.. 26
Optimizing Memory Usage ... 27

Indications of Low Memory ... 27

ii

Minimizing Stack Size ... 27
Minimizing Java Executable Size.. 28
Minimizing Program Data Size.. 29
Freeing Objects and Arrays that Are Not Needed....................................... 29
Avoiding Memory Fragmentation .. 29

1

Introduction
By providing a modern, easy to use, software development environment built for
robotics applications, the RoboJDE Java -enabled robotics software
development environment opens the door to object oriented software
development for educational and hobby robotics projects. RoboJDE enables
you to quickly and easily develop software to control your robot.

RoboJDE includes the major components shown in Figure 1:

RoboJDE Graphical User Interface

RidgeSoft Command Line Loader

RoboJDE Class Library

RoboJDE Virtual Machine

Figure 1 - RoboJDE Components

RoboJDE Graphical User Interface
The RoboJDE Graphical User Interface (GUI), shown in Figure 2, provides an
easy to use tool to edit, build, load and debug robotics programs. The RoboJDE
GUI runs on a computer running Microsoft Windows®, Mac® OS X or Linux and
communicates with the robot controller using an RS232 serial connection.

RidgeSoft Command Line Loader
The RidgeSoft Command Line Loader provides a command line tool to download
a Java program from a computer running Microsoft Windows, Mac OS X or Linux
to a robotics controller. The command line loader facilitates downloading
programs from third-party Integrated Development Environments (IDE) such as
Eclipse, from a command or terminal window or via a command script. This
allows you to develop programs using your favorite Java IDE rather than the
RoboJDE GUI.

RoboJDE Virtual Machine
The RoboJDE virtual machine executes Java programs on the robotics controller
and provides multi-threading, thread synchronization, memory management,
exception handling and device drivers. The virtual machine also provides

RoboJDE GUI

Edit

Build

Load

Debug RoboJDE Library

RoboJDE VM

Robotics Controller

Sensors

Actuators

Java Program

Robot

PC

Introduction 2

protection against common programming errors by detecting errors such as null
references, out-of-bounds array indexes, casting errors and stack overflows.

RoboJDE Class Library
The RoboJDE class library includes standard Java classes, robotics classes and
controller specific classes that provide an excellent foundation for building your
robot s intelligence. You can access full documentation of the RoboJDE class
library by opening the file RoboJDE\apidoc\index.html in your web browser or by
clicking on the RoboJDE API Documentation item in the RoboJDE program
group on the Windows start menu.

Java Programming Benefits for Robotics Software Developers
Java programming offers many benefits that make it an excellent language for
robotics projects. The following is a partial list of the benefits of programming
your robot using the Java language.

Object Oriented Programming. When you use object oriented
programming techniques your robotics software will be easy to understand
and easy to debug. You will be able to make use of the RoboJDE Class
Library. You will be able to share the components you develop with other
developers. If you are working as a team, you will be able to break your
software into components that team members can develop and test
independently.

Ease of Debugging. The Java language and virtual machine are designed
to prohibit or protect against common software problems such as un-
initialized variables, null pointers, wild pointers, casting errors, out-of-bounds
array indexes, and stack overflows. Many problems that would otherwise be
difficult to debug are caught by the compiler or the virtual machine. A
problem caught by the virtual machine generates an exception when it occurs
and includes a stack trace pinpointing the source file and line number where
the problem occurred. System crashes are virtually eliminated with Java
software.

Built-in Operating System Features. The Java language and virtual
machine standardize many operating system functions such as multi-
threading, thread synchronization and memory management.

Software Libraries. The Java specifications standardize the format of
compiled Java programs (class files), eliminating the need to share source or
header files or require a specific compiler when sharing software. As a result,
you can easily use libraries developed by others, such as the RoboJDE Class
Library, and others can easily use software you develop. In addition, the Java
language provides a mechanism, called Javadoc, for generating
comprehensive programming interface documentation in a standard format
that can be viewed using a Web browser.

Introduction 3

Readily Available Supply of Related Books, Literature and other
Resources. The popularity of Java programming has produced a seemingly
limitless supply of resources to help you learn to program using the Java
language.

Portability. Because Java software is designed to be platform independent
and the Java virtual machine is well specified, Java software is very portable.
Using the Java language to develop your robotics software will help ensure it
is portable to other robotics controllers in the future. In addition, you may find
when programming in Java it is convenient to develop and test certain
components of your software on your PC before ever executing it on your
robot.

Learn Modern Software Development Skills. Many languages used for
robotics software development are either special purpose or nearing
obsolescence. The Java language is widely used and Java tools are
available for free on every major computing platform. The skills you develop
using RoboJDE are modern skills that can be applied to other projects on
other computing platforms.

4

Installation
If you do not already have the latest version of the RoboJDE

Java-enabled

robotics software development environment, visit the RidgeSoft web site at
www.ridgesoft.com to download the installation program for your type of
computer.

Install the RoboJDE software by running the appropriate installation program for
your computer and then following the directions provided by the installation
program.

Licensing
RoboJDE software is licensed according to the license agreement included with
the software.

For more information regarding licensing options, visit the RidgeSoft web site
(www.ridgesoft.com).

5

Getting Started
Once you have installed the RoboJDE software, the following sections
describe how to get started using the RoboJDE GUI. Later sections describe
how to use the RidgeSoft Command Line Loader.

Starting the RoboJDE Graphical User Interface
1. Connect your robot controller to a serial port on your computer, as

described in the robot controller documentation.

Note: If your computer does not have a built-in serial port, you will need to
use a USB to serial adapter cable or a USB to serial Bluetooth adapter.
Both are available from www.ridgesoft.com.

2. Run the RoboJDE GUI from the start menu or command line of your
computer.

3. Use the Tools->Settings menu item to bring up the Settings dialog box.

4. If the compiler field is empty, browse to and select the Java compiler you
would like the RoboJDE GUI to use.

Note: If you are using a Linux system which does not have a Java
compiler or Software Development Kit (SDK) installed, you will first need
to install a Java SDK.

5. Select the controller type you are using.

6. Select the port to which you attached the robot controller.

7. Select the baud rate your computer should use when communicating with
the robot controller. For the IntelliBrain 2 robotics controller, choose
115200 baud. For the Handy Board choose 9600 baud.

Note: For the IntelliBrain 2 robotics controller, only use a lower baud rate
if you find communication is unreliable using 115200 baud. If RoboJDE is
unable to communicate to the robotics controller, make sure that you have
selected the correct port. Also make sure the IntelliBrain 2 robotics
controller is configured to use 115200 baud (see the IntelliBrain 2 User
Guide for more information).

8. Click OK.

Note: If another program is using the port you selected, you will receive
an error message. If the error message appears, you must either shut

Getting Started 6

down the other program or use a different port.

9. Turn on your robotics controller. The RoboJDE GUI will display Load,
Ready or Not Responding in the VM state field when you turn your

robotics controller on.

10. If the RoboJDE version displayed on your robotics controller LCD is not
the latest version, you must download the RoboJDE virtual machine to
your robotics controller following the instructions in the next section.

Downloading the RoboJDE Virtual Machine to Your Robotics
Controller

Note: IntelliBrain 2 robotics controllers have the RoboJDE virtual machine pre-
loaded. Therefore, you only need to use this procedure with an IntelliBrain 2
controller if you need to upgrade the virtual machine to the latest version.

1. Select Tools->Download Virtual Machine from the RoboJDE menu.

2. Follow the steps provided.

Note: If you experience problems at this step, repeat the process, being
extremely careful to follow the steps exactly as prompted by RoboJDE. In
particular, do not put your robot controller into download mode until
RoboJDE displays the prompt indicating to do so.

3. When you have completed downloading and have restarted your robotics
controller, you should see RoboJDE followed by the software version
number displayed on your robotics controller s LCD screen.

4. The RoboJDE software is now ready to load a Java program.

Loading and Running the Hello World Example
1. Using the RoboJDE GUI, click the Open Project button (see Figure 3).

2. Browse to the Examples\Basic\HelloWorld folder.

3. Select the file: HelloWorld.rjp

4. Click the build and load button (see Figure 3). The program will be
compiled, linked and loaded. The load program progress bar will display
for several seconds.

5. Once the progress bar has disappeared, click the run button (see Figure
3).

Getting Started 7

6. The message Hello World! will be displayed briefly on the LCD screen
and it will also appear in the Run window in the RoboJDE GUI.

Creating a New Project
The RoboJDE GUI uses project files to make it easy for you to switch between
different projects you may be working on. You can have multiple projects in one
folder, but it is usually preferable to keep your projects in separate folders.

Use the following steps to create a new project:

1. Select File->New Project menu item in the RoboJDE GUI. The Project
Properties dialog will appear.

2. Click the browse button to the right of the project folder field. Browse to
and select the folder you want to create the new project in.

Note: You can create a new folder by browsing to where you want to
create the folder then pressing the create folder button. A folder titled
New Folder will appear. Click on its name to change the name to a

name you choose, then click on the folder icon to the left of the name and
click OK.

3. Enter a name (for example, MyBot) in the Main class field.

4. Click OK.

RoboJDE will automatically create the main class source file and display it
in an editor window.

5. Choose where to load the program (RAM or FLASH) by selecting your
desired load location on the tool bar (see Figure 3).

The Handy Board and Sumo11 do not have flash memory, so the only
available choice is RAM when using these controllers.

Note: It is better to use RAM when developing your program because it is
faster to download to and it avoids wearing out the flash memory.

6. Click the load icon to build and download the newly created program to
the robot controller. If the robot controller is not connected, you can build
the program by clicking on the build icon instead of the download icon.

7. Click the start button to run the program. Since the program does nothing,
it will exit immediately.

8. Edit the main class file to begin developing software to control your robot.

8

Using the RoboJDE Graphical User Interface
The RoboJDE Graphical User Interface (GUI) is shown in Figure 2. The user
interface consists of:

menus

a tool bar

an Edit window

a Run window

Figure 2 - RoboJDE Graphical User Interface

Using Menus
The following tables describe the items available on each menu.

Table 1 - File Menu

Menu Item Description
New Project Creates a new project, prompting you for the project s

properties, creating a Java source file and displaying it in
the Edit window. (See Creating a New Project).

Open Project Allows you to browse to and open an existing project.
Save Project Saves the current project.
Save Project As Allows you to save the current project under a different

name or in a different location.
New Class Creates a file for a new Java class and opens it in the edit

window.

Using the RoboJDE Graphical User Interface 9

Menu Item Description
Open File Opens a source file in the Edit window.
Close File Closes the file currently displayed in the Edit window.
Save File Saves the file currently displayed in the Edit window.
Save File As Allows you to save the file currently displayed in the Edit

window with a different name or in a different location.
Save All Saves all modified files and the project file.
Page Setup Allows you to set page printing parameters.
Print Prints the source file currently displayed in the Edit

window.
Exit Terminates the RoboJDE user interface.

Table 2 - Edit Menu

Menu Item Description
Cut Cuts the selected text in the Edit window.
Copy Copies the selected text in the Edit window.
Paste Pastes text from the clipboard to the cursor position in the

Edit window, replacing any text that is selected.
Find Allows you to search for text in the Edit window.
Find Next Repeats the last search proceeding from the current

cursor position.
Replace Allows you to replace text in the Edit window.
Go To Line Allows you to move to and select a line by line number in

the current file in the Edit window. This is useful for
tracking down compilation errors.

Select All Selects all of the text in the current Edit window.

Table 3 - Project Menu

Menu Item Description
Compile Compiles all of the files that make up the current project,

starting with the main class you specify in the Project
Properties (see Setting Your Project s Properties).

Link Links the current project and library classes to create a
loadable image file to download to your robot. You can
use a development environment other than RoboJDE to
edit and compile your Java classes, then use this menu
item to create an executable you can download to your
robot.

Build Compiles and links the current project, but does not load
it. If the Compile when building and loading box in the
Project Properties dialog is unchecked, the compilation
step will be skipped.

Using the RoboJDE Graphical User Interface 10

Menu Item Description
Load Builds the current project and downloads the program

image to the robot controller. The program will be
downloaded to the load location selected on the tool bar
(see Using the Tool Bar). The controller must be attached
and powered on with RoboJDE loaded, otherwise this
item will be disabled. If the Compile when building and
loading box in the Project Properties dialog is unchecked,
the compilation step will be skipped.

Run Runs the currently loaded program this may be different
from the program you are editing. The controller must be
attached and powered on with RoboJDE in the Ready
state; otherwise this item will be disabled. This item
continues the current program if RoboJDE is in the
Breakpoint state.

Stop Stops the current program running on the controller. If no
program is running this item will be disabled.

Properties Displays the Project Properties dialog (see Setting Your
Project s Properties).

Table 4 - Tools Menu

Menu Item Description
Download Virtual
Machine

Downloads the RoboJDE virtual machine (see
Downloading the RoboJDE Virtual Machine to Your
Robotics Controller).

Settings Displays the settings dialog, allowing you to specify the
Java compiler to use, the robot controller you are using,
the communication port on your host computer to use,
and the baud rate to use.

Note: The baud rate you choose must be configured on
the robot controller to match the setting you make here.
See the robot controller documentation for more
information. The default baud rate for the IntelliBrain 2
robotics controller is 115200 baud. The Handy Board and
Sumo11 controllers only support 9600 baud.

Table 5 - Help Menu

Menu Item Description
About Displays information about RoboJDE.

Using the RoboJDE Graphical User Interface 11

Using the Tool Bar
Figure 3 shows the RoboJDE tool bar. With the exception of the load location
selector, the icons on the tool bar have the same function as the equivalent menu
item (see Using Menus).

Figure 3 - RoboJDE Tool Bar

Selecting the Load Location
The load location selector is the control at the left of the build and load grouping
of controls on the tool bar (see RAM in Figure 3). It allows you to select the
target program bank when downloading your program.

The IntelliBrain 2 controller supports two load locations, RAM and FLASH. When
stored in RAM, your program will be lost when you turn the IntelliBrain 2
controller off. When stored in flash memory, your program will not be lost when
you turn the IntelliBrain 2 controller off. However, flash memory takes longer to
load and wears out if it is written too many times. It is best to develop and debug
your programs using RAM.

Note: If there is a program in RAM, the RoboJDE virtual machine will always
choose to run it over a program stored in flash memory. If you want to run a
program that is stored in flash memory when there is also a program stored in
RAM, turn the IntelliBrain 2 controller off and back on to erase the program
stored in RAM. This will allow you to run the program stored in flash memory.

The Handy Board and Sumo11 have a single load location, RAM. The RAM on
these boards is battery backed up, so the program will not be erased when the
robot is powered off. However, the program and virtual machine will need to be
reloaded if the battery loses its charge.

Project

Open
Properties

File

New Class
Open File
Close File
Save File
Save All

Build and Load

Select load location
Build
Build and load

Run

Run
Stop

Using the RoboJDE Graphical User Interface 12

Figure 4 - Project Properties Dialog

Setting Your Project s Properties
To edit your project s properties, display the Project Properties dialog, shown in
Figure 4, by either clicking on the project properties tool bar icon or using the
Project->Properties menu item.

Table 6 Project Properties Fields

Menu Item Description
Project folder Browse to select the folder that will hold the project file

and the source files for your project by clicking on the
button to the right.

Class path Enter the list of places RoboJDE should search for
classes when building the project.

In most cases you will not need to change the default
setting of this field.

RoboJDE searches the project folder before searching
this list from top to bottom. You can change the search
order by using the buttons to the right to reorder the items
on the list. The list may contain JAR files or the root
folder for a package (typically named classes). The
RoboJDE class library is in the RoboJDE.jar file. This file
is automatically placed on the list. You must not remove
RoboJDE.jar, although you may change its position in the
list.

Using the RoboJDE Graphical User Interface 13

Menu Item Description
Main class Enter the name of your main class. If you are creating a

new project and the source file for the main class does
not exist, RoboJDE will create the file for you.

Stack size Enter the number of stack elements that RoboJDE should
allocate when starting a new thread. See Minimizing
Stack Size for more information.

Run automatically Check this box if you want your program to start
automatically when you power on your robot. This feature
is not supported on the Handy Board and Sumo11
robotics controllers.

Note: Holding the START button down while switching
power on disables this option, allowing you to prevent
your program from starting automatically.

Compile when
building and loading

If you are using another development environment to edit
and compile your program and using the RoboJDE GUI to
load and run your programs, un-check this box.

Note: Another alternative when using Eclipse or another
integrated development environment is to use the
RoboJDE Command Line Loader to load your programs.
See Using the RidgeSoft Command Line Loader.

Using the Edit Window
The Edit window, shown in Figure 2, allows you to edit the Java source files that
make up your program. This window also displays the output of the compiler and
linker in the lower window pane when you build your program.

Editing Your Program
You may open and make changes to multiple files at once. Each file is displayed
in its own edit window under the tab named by the source file name. You may
make changes to your files using the keyboard, mouse and the Edit menu. You
may add a new Java class by using the File->New Class menu item. When you
have completed your edits, click on the build icon, the load icon, the save file icon
or the save all icon on the tool bar.

Building and Loading Your Program
When you click on the build or load icon, RoboJDE will save any source files you
have changed then compile, link and load your program. If you have un-checked
the Compile When Building and Loading field in the Project Properties,
RoboJDE will skip the compilation step. As RoboJDE builds your program,
output will display in the lower pane of the edit window. If there are no errors,
RoboJDE will display build statistics, and if you clicked the load icon, RoboJDE
will download the program to the controller.

Using the RoboJDE Graphical User Interface 14

RoboJDE uses the compiler specified in the Tools->Settings dialog to compile
your Java files and generate class files. RoboJDE launches the compiler as a
separate process and redirects its output to the Edit window s output pane. The
.class files generated by the compiler are placed in the project folder, or in the
classes folder below the project folder if you are using packages (see the Using

Packages section). On Windows systems, RoboJDE defaults the compiler
setting to the Jikes compiler, which is installed with RoboJDE. On Mac and Linux
systems, RoboJDE defaults the compiler setting to the default Java compiler, if
one is installed.

RoboJDE links the program using its built-in optimizing linker. The linker
analyzes your program to determine which classes, methods and fields are
needed to execute your program. The linker then builds an executable image
and creates a map file. The linker minimizes the size of the load image by
automatically eliminating classes, methods and fields that are not need by your
program. This allows the class library and the classes you develop to provide
rich functionality while not inflating the size of your programs. The linker outputs
the loadable image to a .hex file and the map to a .map file in the project
folder. (See the Understanding Errors, Exceptions and Stack Traces section for
more information on the map file.)

The RoboJDE GUI communicates with the RoboJDE virtual machine to
download the image file to the controller s memory.

Once your program has been downloaded, you may click on the run icon to run
your program. RoboJDE will switch the user interface to the Run window.

Debugging Build Errors
If the compiler reports errors, note the source file and line number of each error.
Click on the tab for the file with the error(s), or open the file, then type Ctrl-G or
use Edit->Go to Line to view the line where the error was reported. Once you
have corrected the error, click on the build or download icon to rebuild and/or
download your program.

The RoboJDE linker and loader will report errors if they cannot find classes or
methods your program references. This may happen if you have the wrong
controller type configured in the Tools->Settings dialog or if the class path or
main class in the Project Properties is incorrect.

Using the RoboJDE Graphical User Interface 15

Figure 5 - RoboJDE Run Window

Using the Run Window
The RoboJDE Run Window is shown in Figure 5. The upper portion of the Run
Window shows the status of the virtual machine. The lower portion shows output
from the program running on the robot. By default, your program output to
System.out and System.err will display in this window when you have the
serial cable attached. The run window also decodes stack traces to convert
addresses to a source file, method and line number.

Table 7 describes the Run Window status fields.

Using the RoboJDE Graphical User Interface 16

Table 7 Virtual Machine Status Fields

Field Description
VM State Displays the current state of the virtual machine.

Load the virtual machine is waiting for an program to
be loaded

Ready a program is loaded and ready to run

Running a program is currently running

Breakpoint the virtual machine encountered a break
point. You can add breakpoints to your code by calling
the method VM.breakpoint().

Invalid Port the communication port has not been set.
Use the Tools->Settings to set the correct port.

Not Responding the virtual machine is not responding
to status requests from the user interface. This could
be due to the controller being off, the serial cable not
being connected, or the virtual machine not being
loaded (see Downloading the RoboJDE Virtual Machine
to Your Robotics Controller).

Threads Displays the number of currently running threads.
Objects Displays the current number of Java objects in use.
Free Blocks Displays the number of blocks of memory. Memory may

become fragmented into many free blocks if your program
interleaves creation of long-term objects with short-term
objects. See Avoiding Memory Fragmentation for more
information.

Free Bytes Displays the number of bytes of memory which aren t
currently allocated.

CPU Utilization Displays a bar indicating roughly what portion of time the
controller s CPU is not idle. If your program executes a
loop without sleeping or calling a method that will cause it
to block, the CPU will be 100% utilized. If your program
spends most of its time sleeping or waiting for some input
or output to happen, the CPU utilization will be close to
0%.

Memory Utilization Displays a bar indicating how much of the memory
available to programs is currently being used.

17

Using the RidgeSoft Command Line Loader
The RidgeSoft Command Line Loader allows you to load and run your
programs from a command prompt, an Integrated Development Environment
(IDE), such as Eclipse, a shell script or a batch file.

Command Line Loader Syntax
The command line loader uses the following syntax:

rsload [options] [class]

The class argument is used to specify the name of your program s main class.
The available option arguments are listed in Table 8.

Example

C:\My Documents>rsload -port COM2 HelloWorld
RidgeSoft Loader 2.0.0
(c) Copyright 2009 RidgeSoft, LLC. All rights reserved.
Loading HelloWorld..............
Download complete

Command Line Loader Options
Table 8 - Command Line Loader Options

Option Description
-autorun Run the program automatically after reset.

rsload -autorun HelloWorld

-bank <bank> The memory bank to load.

RAM load the program to RAM memory
FLASH load the program to flash memory

The FLASH option is not available for the Handy Board or
Sumo11 controllers.

rsload bank FLASH HelloWorld

-baud <rate> The baud rate to use.

The baud rate must match the setting on the target
controller.

rsload baud 115200 HelloWorld

Using the RidgeSoft Command Line Loader 18

Option Description
-bootclasspath
<path>

Specifies where to find the bootstrap class files.

Only use this option if you need to substitute your own
classes ahead of classes in the RoboJDE class library.

Default: RoboJDE.jar in installation folder.

rsload bootclasspath
"My.jar;C:\Program Files\RoboJDE\RoboJDE.jar"
HelloWorld

-classpath
<path>

Specifies where to find user class files.

Default: Current folder then the classes folder within the
current folder, if it exists.

rsload classpath My.jar HelloWorld

-help Displays usage help.

rsload help

-loadvm Download the RoboJDE virtual machine to the target
controller.

rsload target IntelliBrain port COM2 loadvm

-port <name> Port to use to communicate with the target controller.

Default: First serial port on the computer. COM1 on
Windows computers.

rsload port COM2 HelloWorld

-run Run the program after loading, or if no class argument is
specified, run the currently loaded program.

rsload run HelloWorld

-stacksize
<size>

Sets the default number of stack elements the virtual
machine uses for each thread it creates, including the
main thread. Each stack element occupies four bytes of
memory.

Default: 200

rsload stacksize 250 HelloWorld

Using the RidgeSoft Command Line Loader 19

Option Description
-target <name> Specifies the type of the target controller.

IntelliBrain IntelliBrain 2 or IntelliBrain robotics controller
HandyBoard Handy Board or Sumo11 robotics
controller

Default: IntelliBrain

rsload target HandyBoard HelloWorld

-verbose Display verbose output.

rsload verbose HelloWorld

Loading and Running Programs from within Eclipse
By configuring the RidgeSoft Command Line Loader, rsload, as an external tool,
you can easily download and run your programs directly from Eclipse. Figure 6
illustrates loading and running a program from within Eclipse.

Figure 6 - Loading and Running HelloWorld from Eclipse

Using the RidgeSoft Command Line Loader 20

Configuring Your Eclipse Project
When creating an Eclipse project for your program, you must replace the default
Java class library with the RoboJDE class library, RoboJDE.jar. Use the
following steps to accomplish this.

1. Navigate to the Libraries tab on the Java Build Path page of the project
properties dialog, as show in Figure 7.

2. Select and Remove the default class library from the list.

3. Click the Add External JARs button, browse to and select
RoboJDE.jar from where you installed RoboJDE.

Figure 7 - Configuring the RoboJDE Class Library

Configuring the Loader as an External Tool
Configure rsload as an external tool using the following procedure.

1. Open the External Tools dialog by clicking the arrow to the right of the
external tool button () on the Eclipse tool bar. The External Tools
dialog is shown in Figure 8.

2. Create a new launch configuration item using the new button.

3. Enter rsload run in the name field.

Using the RidgeSoft Command Line Loader 21

Figure 8 - Adding an External Tools Configuration

4. Click the Browse File System button, browse to and select rsload from
the location where you installed RoboJDE.

5. Enter ${project_loc} in the Working Directory field.

6. Add an argument to indicate the port your computer uses to communicate
with the controller. For example, enter -port COM2 if your computer
uses COM2 to communicate with the controller.

7. Add an argument to indicate the target controller type, either -target
IntelliBrain or -target HandyBoard.

8. Add the -run argument to run the program as soon as the load
completes.

9. Add ${project_name} as the last argument.

Note: This assumes you name your projects using the name of the main

Using the RidgeSoft Command Line Loader 22

class. If this is not the case, you can either enter the literal main class
name or use another Eclipse variable of your choosing that will translate to
the main class name. If you enter the main class name directly, you will
need to modify the launch configuration or create a new configuration
each time you switch to a different project.

10. Click Apply.

11. Select the rsload -run configuration and click the duplicate launch
configuration button.

12. Change the name of the new configuration to rsload.

13. Delete the -run argument.

14. Click Apply, and then click Close.

You have created two launch configurations, one named rsload and the other
named rsload run. The former will load the selected program and the later will
load the program and run it immediately.

Loading and Running Your Program
Once you have created the external tool configurations described in the previous
section, you can load your programs or load and run your programs by clicking
on the appropriately named external tool item in Eclipse by using the following
procedure.

1. Click on the project folder icon in the Package Explorer.

2. Click on the arrow to the right of the external tool button ().

3. Select either rsload or rsload -run, whichever is appropriate.

The output from rsload and your program will appear in an Eclipse Console
window.

Eclipse sets the default external tool to the most recently used external tool. For
subsequent invocations, you can simply click on the project and then the external
tool button.

23

Programming Your Robot
In order to program your robot you will need to be familiar with:

Java programming

the RoboJDE

class library

the robot controller, sensors, and effectors you will be using

Using the RoboJDE Class Library
The RoboJDE class library provides the foundation classes you will use to
program your robot. The class library provides the Application Programming
Interface (API) to the robot controller hardware and various sensors and
effectors. In addition, the class library includes higher level classes that provide
a foundation to help you build an intelligent robot. The class library also provides
a subset of classes and methods found in the java.lang, java.util,
java.io,and javax.comm packages defined by the Java specifications.

Detailed documentation of the class library is included with RoboJDE in standard
Javadoc format. You can view the documentation by clicking on the index.html

file in the apidoc folder or by browsing to it using your web browser.

Robot Controller API Quick References
The docs folder contains a quick reference graphic summarizing the API to
each supported robot controller.

Table 9 - Controller API Quick References

Controller File Name
IntelliBrain 2 IntelliBran2API.pdf
IntelliBrain IntelliBrainAPI.pdf
Handy Board HandyBoardAPI.pdf
Sumo11 Sumo11API.pdf

Learning from Examples
RoboJDE provides many example programs which demonstrate how to interface
a Java program to various robot controllers, sensors and effectors. Numerous
examples of programming the IntelliBrain-Bot are also included, as well as
examples of several other complete robot programs.

The example programs may be found in the Examples folder.

Understanding Errors, Exceptions and Stack Traces
All run-time errors are reported to your Java program as exceptions.
Understanding exceptions and stack traces will improve your ability to quickly
identify and resolve problems in your Java programs. If you are not familiar with

Programming Your Robot 24

debugging using stack traces, it will be well worth your time to learn how to use
stack trace output to find and resolve problems in your programs.

RoboJDE catches all uncaught exceptions in your program s main thread and
prints a stack trace should an exception occur. By default, the output of the
printStackTrace() method goes to both the Run window in RoboJDE and to
the LCD screen. This method prints the name of the exception class, the
exception message and a stack trace. You can view specific information on an
exception class by viewing the API documentation for the class.

Note: Under certain circumstances, such as OutOfMemoryError and
StackOverflowError exceptions, the error condition may prevent RoboJDE from
printing a stack trace, resulting in the program exiting without an indication of the
cause.

The following example illustrates how you can use a stack trace to find the cause
of an ArithmeticException when the example executes. Line numbers have
been added to the left for the purpose of this discussion.

1 public class DivideByZero {
2 public static void main(String args[]) {
3 System.out.println("Result: " + divide(5, 0));
4 }
5
6 private static int divide(int dividend, int divisor) {
7 return dividend / divisor;
8 }
9 }

Running this example results in the following output in the RoboJDE Run
window:

ArithmeticException
 at DivideByZero.divide(DivideByZero.java:7)
 at DivideByZero.main(DivideByZero.java:3)

The first line of output indicates an ArithmeticException occurred. The API
documentation indicates this exception is thrown by the virtual machine when the
program attempts to divide by zero. The first line of the stack trace indicates the
exception occurred in the class DivideByZero and in method divide() at line
7 in the source file DivideByZero.java. Examining line 7 in the source file, shown
above, reveals the program was attempting an integer division and the divisor
argument to the divide() method must have been zero. The divide method is
correct, but the method that called divide must have passed 0 as the divisor.
The second line of the stack trace shows that the main() method called

Programming Your Robot 25

divide() at line 3 in DivideByZero.java. Examining line 3 shows that
divide() is being called with a divisor of 0, which is the cause of the exception.

Note: You can view a particular line in a source file by opening the file in the Edit
window, then using Ctrl-G or Edit->Go to Line to go to that line.

If you are using multiple threads, it is good practice to include a try-catch block
around all of the code in your run methods, as shown in the following example.
This will ensure a stack trace will be printed before the thread exits if an
uncaught exception occurs; otherwise, the thread may exit without any indication
of what caused it to terminate.

// A Thread s run method
public void run() {
 try {
 // your code
 :
 :
 }
 catch (Throwable t) {
 t.printStackTrace();
 }
}

The stack trace printout to the LCD screen lists addresses rather than the class,
method, source file and line number information printed out in the RoboJDE Run
window. This is because this detailed information is not available on the robot
controller. You can refer to the map file RoboJDE generated in the project folder
when you built your program to determine which methods were executing at the
time of the exception.

Internal errors should rarely or never occur. They are the result of errors in the
virtual machine. You can t fix internal errors by changing your program, though
you may be able to avoid them by changing your program. If your program
encounters an internal error, observe the instruction pointer (ip) / program
counter value displayed by the virtual machine when the error occurred. Look
this value up in the map file (see below) to determine what method your program
was executing when the error occurred. This may provide some insight into what
triggered the internal error, and perhaps it will allow you to change your code to
avoid it. Also, refer to the RidgeSoft web site for support information or send
email to support@ridgesoft.com to report the error.

Programming Your Robot 26

Map Files

A map file is generated each time you build your program. The map file is
named by the name of your program s main class followed by $.map (for
example, HelloWorld$.map). The map file is created in the project folder. The
map file provides statistics generated by the linker followed by the list of methods
included in the linked image. Each method s name in the listing is preceded by
the hexadecimal starting and ending addresses of the executable portion of the
method. The addresses are non-contiguous because they only refer to the
executable code and not the non-executable class, method and field data
contained in the executable image.

Using Packages
If your robotics projects become large or you are developing your own class
library, you may find it convenient to organize your project(s) into packages. If
you are working with small projects, it is best to avoid the complexity of
packages.

If storing all of your files for a particular project in single folder isn t practical,
RoboJDE supports organizing your project in a package hierarchy, as shown in
Figure 9. The root folder is the project folder you specify in the Project Properties
dialog. The src folder is the root of the source code files for your package and
the classes folder is the root of the compiled class files for your project. These
folders and the subordinate folders are created automatically under the project
folder by RoboJDE when you include a package name when creating a new
class.

Figure 9 - Example Package Structure

All you need to do to create a project that uses a package structure is provide
package names when specifying the names of your classes. For example, if you
were to enter the main class name edu.myschool.robotics.AClass when
creating a project the package structure shown in Figure 9 would be created.
The steps you need to follow to build, load and run your program don t change
whether you choose to organize your project using a package hierarchy or not.

Programming Your Robot 27

Optimizing Memory Usage
As you create more sophisticated intelligence for your robot you may find it is a
challenge to fit your program into the small amount of memory on the robot
controller. This section provides many tips that will help you make the most of
the available memory on your robot controller.

Memory optimization is much less important if you are using the IntelliBrain 2
controller. As shown in Table 10, the IntelliBrain 2 has more than ten times the
memory available for your program than does the Handy Board or Sumo11.

Table 10 - Controller Memory Comparison

Controller Memory
IntelliBrain 2

128K flash program memory (60K available for your Java
program)

132K RAM (128K available for program data)
Handy Board /
Sumo11

32.25K RAM (~16K available for your Java program and
its data)

Indications of Low Memory
The statistics on the RoboJDE Run window indicate how much memory your
program is using, how much memory is free and how fragmented the free
memory is. These statistics provide the primary indication of low memory.

If your program attempts to create an object or to start a thread and there is not
enough memory to satisfy the request, the virtual machine will throw an
OutOfMemoryError. This exception can be caught by your program and an
error message displayed provided there is still enough memory to execute your
exception handling code. If there is not enough memory to execute the
exception handler, the thread may exit silently. You can determine if this has
happened by observing if the Threads statistic in the Run window indicates if all
of your program s threads are running. If you only have one thread, the program
will exit and the virtual machine state will revert from Running to Ready.

Minimizing Stack Size
Minimizing the number and size of stacks is normally the easiest way to optimize
your program's memory use. The default stack size for your program is set in the
Project Properties dialog. By default, RoboJDE sets the stack size to 200 4-byte
elements (800 bytes). The fewer nested calls your program makes, the smaller
the stacks your program will need. The minimum stack size needed to execute
the startup code before your main method is called is about 100 elements.

Each thread you create requires its own stack. Reducing the number of threads
you use will result in a substantial savings of memory due to fewer stacks. In
addition, the threads you create normally do not require as much stack space as
the main thread because they don't need to execute the startup code as the main
thread does. By default, the threads you create have the stack size specified in

Programming Your Robot 28

the Project Properties dialog. However, your program can adjust a thread's stack
size prior to starting a thread by using the following method:

VM.setStackSize(Thread thread, int stackSize);

Often the stack size can be trimmed down to 60 elements or less. Finding the
right size is a trial and error process. If a thread s stack is too small, a
StackOverflowError will be thrown, but if there is not enough stack space to
execute your catch block code, the thread may exit silently. By monitoring the
Threads statistic in the Run window you can determine if all of your program s
threads are running.

Finally, if your program s main thread requires a lot of stack space to get the
program up and running, it may be advantageous to have another thread with a
smaller stack take over control and have the main thread exit.

Minimizing Java Executable Size
The executable program is normally the biggest consumer of memory. RoboJDE
does a lot to minimize its size, such as not including classes, methods and
member variables in the executable program that will never be used. However,
reducing the number of classes, methods and member variables your program
references will reduce the amount of memory the program uses. Often less
abstraction and a more procedural approach will reduce the program size.

For the Handy Board and Sumo11, the HandyBoard class often provide two
means to access the controller s features, a static method that carries out an
operation directly, or a method that returns an object supporting a generalized
interface. In cases where there isn't a lot of benefit to using the abstraction of the
generalized object, calling the static method directly may save on executable
size.

RoboJDE reports the size of the executable in the build output pane of the Edit
window.

Table 11 - Data Type Sizes

Type Range Size in

Field Array Local/Stack

boolean true, false 1 byte 1 bit 4 bytes
byte -128 - 127 1 byte 1 byte 4 bytes
short -32768 - 32767 2 bytes 2 bytes 4 bytes
char 0 - 65768 2 bytes 2 bytes 4 bytes
reference n/a 2 bytes 2 bytes 4 bytes
int -(2^31) - 2^31-1 4 bytes 4 bytes 4 bytes
float ~±10^38 4 bytes 4 bytes 4 bytes
long -(2^63) - 2^63-1 8 bytes 8 bytes 8 bytes
double same as float 8 bytes 8 bytes 8 bytes

Programming Your Robot 29

Minimizing Program Data Size
Program data typically does not consume a large amount of space unless you
are using arrays. Never the less, using the smallest suitable data type for your
member variables and array elements will save space. Table 11 summarizes the
space consumed by each of the Java primitive data types.

Note: All local variables consume one stack element (4 bytes), except for long
and double, which consume two. Therefore, using byte, short and boolean for
local variables will not necessarily save memory space.

Freeing Objects and Arrays that Are Not Needed
When objects are no longer referenced by the program, RoboJDE automatically
recovers their memory. Being careful to avoid lingering references to objects that
are no-longer needed will allow RoboJDE to more quickly recover memory.
When an object is no-longer need, setting references to it to null will allow
RoboJDE to recover the memory it uses. If you have data structures that make
circular references, be sure to break the circular references by setting them to
null so RoboJDE will recognize the objects that are free to be garbage
collected.

Avoiding Memory Fragmentation
Generally fragmentation isn't a big issue because robotics programs tend to
allocate most of their long term control objects during initialization. However,
interleaving the creation of long term objects with creation of short term objects
may cause memory to become fragmented. Fragmentation problems are usually
indicated by an ever increasing Free Blocks count in the Run window each
free block is a fragment of free memory. If your program is collecting
information, such as objects holding mapping data, it may be advantageous to
pre-allocate objects at startup to avoid memory fragmentation.

